hLTF lettering final

Human Live Tumor Fragments (hLTF)™ are taken directly from a patient and maintain the tumor microenvironment and the tumor architecture.

Cybrid™ incorporates a comprehensive suite of assays to help understand the mechanisms of action of immunotherapeutic compounds indicating drug response.

Secretome profiling
Cytokine and chemokine response spider-plot

Profiling of innate and adaptive immune response using secreted factors

Cellular markers
graph1

Measurement of cellular subsets and activation markers

Transcriptomics
graph3

Detection of immune response at the mRNA level

Spatial biology
MPM CRC

High-content 3D imaging over time with both intrinsic and extrinsic fluorescence

cybridview
  • Dynamic visualization application for analyzing multi-omic assays and images.
  • All data and results delivered securely via the cloud.
  • CybridView is a cloud-based portal to aggregate and deliver all data and results during and at the conclusion of a study run through the Cybrid platform.
  • CybridView enables near real-time availability of study data.
  • Through the export functionality, users are able to export a .csv of all data after study conclusion. 
device_4
Frequently asked questions Frequently asked questions
Why use live tumor fragments (LTFs) over spheroids or organoids?

LTFs derived from tumor biopsies retain the native architecture and microenvironment of the parental tumor, including immune cells, which are required to predict response to immunotherapy.

Unlike spheroids or organoids, there is no requirement for the expansion of cells or reconstitution of immune cells, enabling a faster turnaround time to characterize the MOA and/or efficacy of candidate therapeutics.

Additionally, precision fragmentation of tumor biopsies eliminates the need for non-specific enzymatic dissociation of tumor tissue, which can disrupt/alter the native tumor architecture.

What is Elephas’ advantage of using multiphoton imaging over conventional techniques?

Conventional techniques such as confocal microscopy can be destructive and have limited penetration into the tissue sample.

Elephas’ multiphoton imaging is non-destructive, enables real-time monitoring of immune cells, and allows label-free imaging at significantly higher penetration depths to investigate LTFs in 3D.

What is the benefit of combining multiphoton imaging and multiplexed assays to predict treatment response?

Multiplexed assays are routinely used to profile cell markers, cytokines, chemokines, and mRNA expression to determine response to drugs. However, these assays are typically performed in the absence of spatial context.

By combining various assessments with multiphoton imaging, we can analyze spatial and temporal information at single cell resolution to understand the impact of drugs on call-cell interactions, cell morphology, and the arrangement of cells in LTFs over time.

The combination of these techniques also generates a rich and diverse dataset that can be used to train AI algorithms to predict response to different therapies.